Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanotechnology ; 33(34)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525188

RESUMO

Magnetic relaxation in a nanoparticles system depends on the intra-particle interactions, reversal mechanism, the anisotropy field, easy axis distribution, particle volume, lattice defects, surface defects, materials composite, etc. Here we report the competing magnetic states between superparamagnetic blocking and Néel transition states in 14 nm core-shell NiO nanoparticles. A crossover temperature of 50 K was observed for both these states from the zero field cooled/field cooled magnetization curves taken at different fields. At crossover temperature, an interestingM-Hloop splitting is observed which is attributed to the slow spin relaxation. This anomalousM-Hloop splitting behaviour was found to be particle size dependent and suppressed for diameters above and below 14 nm which indicates a critical size for these competing magnetic states. Additional neutron diffraction experiments confirmed this observation. This experimental study provides a new insight for the understanding of intra-particle interactions in fine antiferromagnetic nanoparticles and obtained results are an important step towards deeper understanding of the competing/non-competing modes between superparamagnetic blocked and Néel transition states.

3.
Nanotechnology ; 31(47): 475701, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32885794

RESUMO

The effect of Fe and Mn co-doping on the magnetic properties of the antiferromagnetic (AFM) NiO nanoparticles which offer large potential for different magnetic applications have been studied. The Rietveld refinement fitting of powder x-ray diffractometry (XRD) patterns confirmed the phase formation of face-centred cubic crystal structure of NiO and average crystallite size lies in the short range of 32-38 nm. The cavity and broadband ferromagnetic resonance (FMR) measurements taken at room temperature demonstrate the smaller local magnetic inhomogeneity for 4%Mn-4%Fe co-doped NiO nanoparticles as compared to undoped, single doped and co-doped with different concentration NiO nanoparticles. The M-H loops revealed the room temperature ferromagnetism-like behaviour for higher Fe doping concentration and lower Mn doping concentration. This can be attributed to the double exchange interaction. The zero field cooled (ZFC) and field cooled (FC) dc magnetization curves showed a small surface freezing peak (at[Formula: see text] at low temperatures and a blocking peak (at [Formula: see text] at higher temperatures. For samples with 4%Mn-4%Fe and 2%Mn-6%Fe, the blocking peak was found at a relatively high temperature in comparison to other samples. This can be attributed to the presence of magnetic exchange interactions which block the magnetic spins against a thermal increase. The ZFC AC-susceptibility showed three peaks; a surface freezing peak at Tf, a blocking peak at TB peak and an anomalous peak at Tx in between [Formula: see text] and [Formula: see text], which was found to be most prominent for the 4%Mn-4%Fe co-doped nanoparticles. The neutron diffraction pattern confirmed the AFM order of the core of the 4%Mn-4%Fe co-doped nanoparticles, which indicates an AFM coupling between the Fe2+ and Mn2+ ions and the Ni2+ ions through super-exchange interaction. Therefore, the origin of TX peak can be attributed to the ferromagnetic coupling between the Fe2+ and Mn2+ ions which has a maximum strength at equal concentration. Thus, small and equal doping concentration of Fe and Mn in NiO nanoparticles increase the magnetic homogeneity which makes them attractive for magnetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...